Optimization of Au-Cu Codeposition for Enhanced Electrochemical Performance on Screen-Printed Graphene Electrodes

Jidsucha Darayen

Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Thailand

Kanlaya Chamnikun

Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Thailand

Arthittaya Jinda

Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Thailand

Sakda Jampasa

Futuristic Science Research Center, Thailand

Orawon Chailapakul

Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand

Abstract:

This study investigates the effect of Au ratio in Au-Cu codeposition on the electrochemical response of a screenprinted graphene electrode (SPGE). The current response was measured at different precursor concentrations (55 nM, 110 nM, 165 nM, 220 nM, and 275 nM) to determine the optimal Au-Cu composition for enhanced electrochemical performance. The results show a non-linear trend, with the highest current observed at an Au ratio of 0.50, exhibiting an increase of approximately 100–250% compared to other compositions. This significant enhancement is attributed to the formation of a well-balanced Au-Cu alloy, which maximizes electron transfer and improves conductivity. At lower Au ratios, the presence of excess Cu may lead to a less stable deposition structure, reducing electrochemical efficiency. Conversely, at higher Au ratios, the reduction in Cu content likely disrupts the alloy's catalytic synergy, leading to a decline in current. These findings highlight that an Au ratio of 0.50 provides the optimal composition for Au-Cu codeposition, offering superior electrochemical properties for potential applications in biosensors and electrocatalysis.

Keywords:

Au-Cu co-deposition, Biosensor optimization, Current enhancement, Glucose detection, Electrochemical performance.