

## Numerical Investigation of Evolution of Plume Structure in Rayleigh-Benard Convection

**Syam Joy**

Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Kochi, Kerala, India

**Franklin R John \***

Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Kochi, Kerala, India

**Joshy P J**

Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Kochi, Kerala, India

**Baburaj A Puthenveettil**

Department of Applied Mechanics & Biomedical Engineering, IIT Madras, Chennai, Tamil Nadu, India

### Abstract

Numerical Investigations were carried out to study the Evolution of plume structure in Rayleigh-Benard convection at a constant  $Pr = 5.2$  (water) and over a range of Rayleigh number  $4.43 \times 10^5 < Ra_H < 7.95 \times 10^8$ . Three domains of cross-section  $15 \text{ cm} \times 15 \text{ cm}$  and height of 5 cm, 10 cm and 20 cm were used to study the plume structure rising from the thermal boundary layer over the high-temperature bottom plate. Transient simulations were carried out in ANSYS Fluent to study the evolution of plume structures. Four different regimes were observed viz, initiation phase; characterised by stable boundary layer across the planform, impingement phase; characterised by the destabilisation of the boundary layer and impingement of bulk flow, plume formation phase; characterised by the formation of line plume from the boundary layer, and plume dynamics phase; characterised by the lateral movement of plume, formation of new plumes and merging of plumes. Total length of plume ( $L_p$ ) and plume thickness ( $t_p$ ) were measured from the planforms, and mean plume spacing ( $\lambda$ ) and plume area ratio ( $A_p/A$ ) were calculated using  $\lambda = A/L_p$  and  $A_p/A = t_p \times L_p / A$ . Total length of plume was found to increase with  $Ra_H$ , whereas mean plume thickness was found to decrease with  $Ra_H$ ; these opposing trends result in plume area ratio nearly independent of  $Ra_H$ .

### Keywords

Convection, plume structure, boundary layer, plume spacing, length of plumes, plume thickness, and plume area ratio.