International Conference on 2025

26th – 27th March 2025

Multifunctional ZIF-67 Membrane for Environmental Remediation: Organic Pollutant Removal and CO₂ Capture

Parasuraman Vijayarohini

Research Center for Climate change and Energy, Hallym University, Chuncheon, 24252, Republic of Korea

Woo Ram Lee

Assistant Professor, Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea

Hari Krishnan Yogesh

PhD candidate and Research Assistant, Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea

Seung do Kim

Professor, Department of Environmental Science and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea

Abstract:

Industrialization has significantly increased emissions of volatile organic compounds (VOCs), such as toluene, and carbon dioxide (CO₂), both of which pose environmental and health risks. While toluene exposure can cause respiratory and neural damage, rising CO₂ levels drive climate change, necessitating effective capture and conversion strategies. Metal-organic frameworks (MOFs), particularly ZIF-67, have emerged as promising materials for VOC degradation and CO₂ capture due to their high porosity and adsorption capacity. To enhance structural integrity and efficiency, ZIF-67 membranes were fabricated using an alumina (Al₂O₃) substrate, improving stability and gas-phase interactions for fixed-bed reactor applications. However, MOFs lose efficiency in humid conditions due to competitive water adsorption. To mitigate this, polydimethylsiloxane (PDMS) and IH,1H,2H,2H-perfluorodecyltriethoxysilane (PFS) coatings were applied, enhancing hydrophobicity and maintaining high adsorption performance. A systematic analysis of ZIF-67, ZIF-67 PDMS, and ZIF-67 PFS membranes demonstrated that hydrophobic modifications significantly improve VOC removal and CO₂ capture. These dual-functional materials offer a sustainable approach to air purification, reducing atmospheric pollution while supporting eco-friendly industrial advancements. This study highlights an innovative pathway toward environmental sustainability and cleaner air.

Keywords:

Air pollution, ZIF-67 membrane, environmental remediation, toluene, CO₂ capture.

Proceedings of International Conference - 2025