

A Comparative Study of Lightweight CNN Architectures for Real-Time Plant Disease Diagnosis on Mobile Devices

Benyamina Ahmed

Tahri Mohammed University of Bechar, Béchar, Algeria

Rabhi Mabrouk

Tahri Mohammed University of Bechar, Béchar, Algeria

Seddiki Mohammed Said

Tahri Mohammed University of Bechar, Béchar, Algeria

Abstract

Rapid and accurate plant disease detection is critical for reducing agricultural losses, particularly in resource-limited regions lacking expert diagnostics and reliable internet. This study evaluates state-of-the-art lightweight CNNs—GhostNet, ShuffleNetV2, EfficientNet-B0, MobileNetV2, MNASNet, MobileNetV3, and SqueezeNet—for real-time disease classification on mobile devices, optimizing the trade-off between accuracy, computational efficiency, model size, and inference latency.

Benchmarking results highlight EfficientNet-B0 as the top performer in accuracy (97.40% test accuracy), attributed to its compound scaling method that balances network depth, width, and resolution. ShuffleNetV2 excels in efficiency, achieving 96.54% accuracy with the smallest model size (5.10 MB) and fastest inference time (0.0091 seconds). MNASNet provides the best speed-accuracy balance (96.04% accuracy, 0.0068 seconds inference), leveraging its platform-aware neural architecture search. GhostNet demonstrates competitive performance (95.25% accuracy, 15.34 MB model, 0.0132 seconds inference) but is surpassed by EfficientNet-B0 and MNASNet in both accuracy and speed. MobileNetV2 offers moderate accuracy (95.12%) but suffers from higher latency (0.0474 seconds) and larger size (16.90 MB). MobileNetV3 variants and SqueezeNet exhibit significant limitations, revealing challenges in excessive model compression.

For practical deployment, EfficientNet-B0 is optimal for maximum accuracy, ShuffleNetV2 for speed and resource efficiency, and MNASNet for balanced performance. All models maintain robustness when ported to mobile hardware, validating their suitability for real-time disease diagnosis in connectivity-scarce environments.

This research advances mobile-compatible deep learning solutions for precision agriculture, addressing infrastructural gaps in underserved regions. Integrating these models into smartphone applications enables timely, on-site disease detection, supporting data-driven crop management and food security.

In conclusion, EfficientNet-B0, ShuffleNetV2, and MNASNet emerge as the most effective lightweight CNNs for mobile-based plant disease classification, offering scalable solutions to enhance agricultural resilience in resource-constrained settings. Their deployment aligns with smart agriculture objectives, bridging technological disparities and promoting sustainable farming practices.

Keywords

Lightweight CNN, plant disease classification, mobile deep learning, real-time diagnosis, precision agriculture.