Highly Efficient Thermal Conductivity of Polyarylene Ether Nitrile Composites Via the Introduction of Hybrid Fillers and Tailored Cross-Linked Structure

Lifen Tong

University of Electronic and Science Technology of China, China

Liang He

University of Electronic and Science Technology of China, China

Yu Zheng

University of Electronic and Science Technology of China, China

Xiaoling Xu

University of Electronic and Science Technology of China, China

Xiaobo Liu

University of Electronic and Science Technology of China, China

Abstract:

A polymer alloy with balanced thermal conductive and dielectric properties was successfully prepared by polyarylene ether nitrile(PEN), bisphthalonitrile-microsphere@boron nitride nanosheets(Bm@ BNNS), and silicon carbide whisker (SiCws). Specifically, introduction of Bm@BNNS fillers with coreshell structure into PEN resins results in heterogeneous interfaces, which effectively reduces the agglomeration and dosage of BNNS and synergistically improves the λ and dielectric performance. Besides, it has high breakdown strength (Eb) and high energy storage density (242.26 kV/mm, 1.66J/ cm³) when filled with only 4.37 vol% BNNS. Furthermore, effects of one-dimensional SiCws at different scales on formation of heat-conduction pathways and electrical insulation properties of PEN/Bm@ BNNS composites were investigated. The findings display that PEN/Bm@BNNS/SiCws composites with large size SiCws (7.81 vol%) achieved a high λ of 2.376 W/(m.K), which was 135.24 % and 87.09 % higher than pure PEN and PEN/Bm@BNNS composites, respectively. Thus, the thermal conductive pathways are constructed by line-plate structure (SiCws-BNNS), and insulating performance primarily on the core-shell structure (Bm@BNNS). Besides, the novel PEN/Bm@BNNS/SiCws hybrid materials are together with a low coefficient of thermal expansion of 38–89 ppm/°C and high Tg of 220 °C. Thus, it gives a promising insight to achieve highly λ polymer-based insulating film materials used for hightemperature-resistant fields.

Keywords:

Δ

Polymer-based composites, Thermal conductivity, Insulating properties, Boron nitride nanosheets, Silicon carbide whisker.

Proceedings of International Conference - 2025