

Feature Selection for Deepfake Detection: A Comparison of Artemisinin Optimization and Particle Swarm Optimization on the FF++ Dataset

Aynur Koçak

Faculty of Technology, Electrical and Electronics Engineering, Gazi University, Ankara, Türkiye

Esra Söğüt

Faculty of Technology, Computer Engineering, Gazi University, Ankara, Türkiye

Rümeysa Özer

Faculty of Technology, Electrical and Electronics Engineering, Gazi University, Ankara, Türkiye

Abstract

The proliferation of deepfake content poses significant threats to digital security. In this study, feature extraction was performed on the FaceForensics++ (FF++) dataset using the Xception model, and metaheuristic-based optimization methods were applied to examine the impact of selected features on classification accuracy. Specifically, we compared the Artemisinin Optimization Algorithm (AO), a relatively new algorithm in the literature, with the classical and widely used Particle Swarm Optimization (PSO) algorithm. Selected features were classified using a multilayer perceptron (MLP), and performance metrics were evaluated using AUC, accuracy, precision, sensitivity, and F1-score. Experimental findings demonstrate that both algorithms provide effective feature selection. However, the AO algorithm achieved a higher success rate with an AUC of 99.30%, surpassing PSO's 98.79% performance. This result demonstrates that AO offers a powerful and innovative alternative for deepfake detection, while also providing a significant advantage over classical methods.

Keywords

Deepfake detection, feature selection, Xception, Artemisinin Optimization, Particle Swarm Optimization