

Biological Control of *Tuta absoluta* in Saudi Arabia: A Promising Organic Strategy Using Entomopathogens

Mohamed Baha Saeed

Saudi Organic Farming Association, Postal code 12482, Riyadh, Kingdom of Saudi Arabia

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Sudan

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, South Africa

Abdulaziz M. Alnasser

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Nasser I Alaruk

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Abdulrahmn A Algrwai

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Salman A Aloudah

Saudi Organic Farming Association, Postal code 12482, Riyadh, Kingdom of Saudi Arabia

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Sultan M Al Eid

National Organic Agriculture Center, Postal Code 56467, Unaizah, Qassim, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia

Abstract

Tuta absoluta (Meyrick) is a damaging pest of tomato, with soil stages that are difficult to control using typical insecticides. This research tested two local biocontrol agents, *Beauveria bassiana* (strain NOAC.F7) and *Heterorhabditis indica* (strain NOAC.N8), applied alone or in sequence as soil drenches against the fourth larval stage of *T. absoluta* in greenhouse conditions. *B. bassiana* was tested at 2×10^8 and 2×10^9 spores/ml, while *H. indica* was applied at 100 and 150 IJs/cm². Sequential treatments involved *B. bassiana* followed by *H. indica* after 24 or 48 hours. The experiment used a randomized complete block design with three replicates, and adult emergence was measured. In the control, adult emergence was 100%. Single applications of either *B. bassiana* or *H. indica* moderately reduced pest emergence, to about 48–52%. Sequential treatments improved control, lowering adult emergence to 42–47%. While differences between the 24-hour and 48-hour intervals were not statistically significant, a slightly better suppression was observed with the earlier application of the nematodes. Overall, combining fungal and nematode biocontrol agents provided better control of *T. absoluta* than using either alone. These findings suggest that combining *B. bassiana* (NOAC.F7) with *H. indica* (NOAC.N8) could be an effective and environmentally friendly strategy for managing the fourth larval stage of *T. absoluta* in greenhouse tomato cultivation.

Keywords

Biocontrol, *Tuta absoluta*, *Heterorhabditis indica*, *Beauveria bassiana*, Tomato, Greenhouse.