

International Conference 2025

28th – 29th November 2025

integrated CFD–RSM approach provides both qualitative flow–thermal insights and quantitative design guidelines, enabling efficient BTMS optimization for varying load conditions while balancing safety, uniformity, and energy efficiency.

Keywords:

Air-cooled BTMS, 21700 lithium-ion battery, finned heat sink, thermal, management optimization, CFD–RSM integration, multi-response ANOVA.

Design and Multi-Objective Optimization of Fin-Assisted Air-Cooled Thermal Management System for 21700 Lithium-Ion Cylindrical Cells Using Numerical Simulation and Response Surface Methodology

S MD Shehabaz

Department of Mechanical Engineering, NIT Andhra Pradesh, India

S.K.Gugulothu

Department of Mechanical Engineering, NIT Andhra Pradesh, India

Raju Muthyala

Sri Venkateswara Engineering College, Suryapet, Telangana, India

Praveen Barmavatu

Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile

Abstract:

This study presents a comprehensive numerical and statistical investigation of an air-cooled BTMS for a single 21700 cylindrical lithium-ion cell, focusing on the influence of airflow velocity, discharge rate (C-rate), and longitudinal fin configuration. A 3D CFD model, validated against experimental data, was developed to evaluate four configurations (bare cell, 2 fins, 4 fins, 6 fins) under velocities of 2–6 m/s and C-rates of 1C–3C. The analysis assessed peak temperature (T_{max}), temperature difference (ΔT), and average temperature (T_{avg}) to determine thermal safety and uniformity. Results indicate that C-rate is the dominant factor, with T_{max} rising from 30 °C at 1C to over 100 °C for the bare cell at 3C–2 m/s. Increasing airflow from 2 m/s to 6 m/s reduced T_{max} by up to 15 °C at high C-rates, while adding fins improved heat spreading, lowering T_{max} by 8–10 °C and ΔT by up to 4 °C compared to the bare cell. At 3C–6 m/s, a 6-fin configuration achieved $T_{max} \approx 60$ °C and $\Delta T < 8$ °C, ensuring safe operation. Velocity streamline and temperature contour analyses revealed that fins enhance circumferential flow coverage, reduce recirculation zones, and improve thermal uniformity. Response Surface Methodology (RSM) models for T_{max} , ΔT , and T_{avg} achieved $R^2 > 0.97$, with ANOVA confirming significant main and interaction effects. Multi-response optimization identified an optimal low-load condition (2 m/s, 1C, 2 fins) yielding $T_{max} = 39.16$ °C, $\Delta T = 6.78$ °C, and $T_{avg} = 32.08$ °C (desirability = 0.798). At high C-rates, optimal thermal performance required ≥ 4 fins and ≥ 4 m/s airflow. The